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Abstract

In this paper, we describe the program structure tree (PST),
a hierarchical representation of program structure based on
single entry single exit (SESE) regions of the control flow
graph. We give a linear-time agorithm for finding SESE
regions and for building the PST of arbitrary control flow
graphs (including irreducible ones). Next, we establish a
connection between SESE regions and control dependence
equivalence classes, and show how to use the algorithm
to find control regionsin linear time. Finally, we discuss
some applicationsof the PST. Many control flow a gorithms,
such as congtruction of Static Single Assignment form, can
be speeded up by applying the algorithmsin a divide-and-
conquer style to each SESE region on its own. The PST
is also used to speed up data flow analysis by exploiting
‘sparsity’. Experimental results from the Perfect Club and
SPECB89 benchmarks confirm that the PST approach finds
and exploits program structure.

1 Introduction

The contributionsof this paper are the following.

In Section 2, we introduce the program structure tree
(PST) which is a hierarchica representation of the control
structure of a program. Nodes in this tree represent single
entry singleexit (SESE) regions of the program, whileedges
represent nesting of regions. The PST is defined for all
control flow graphs, including irreducible graphs.

InSection 3, wegivean O( £) algorithmfor finding SESE
regions. This algorithm works by reducing the problem to
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that of determining a simple graph property that we call cy-
cleequivalence: two edgesarecycleequivaentinastrongly
connected component iff for al cycles C', C' contains either
both edges or neither edge. We giveafast, linear-time ago-
rithm based on depth-first search for solving thecycle equiv-
alence problem, thereby finding SESE regionsinlinear time.
Thisalgorithmrunsvery fast in practice— for example, our
empirica results show that it runs faster than Lengauer and
Tarjan’s agorithm for finding dominators [LT79]. We use
this algorithm to build the PST for arbitrary flow graphs
in O(E) time. In Section 4, we give experimenta results
that characterize the structure of the PST in standard bench-
marks such as Perfect Club, SPEC, and Linpack programs.
Asone would expect, the PST is usually broad and shallow
— roughly 97% of all SESE regions have a nesting depth of
6 or less.

In Section 5, we apply the cycle equivalence agorithm
to finding control regions in O(E) time. Two nodes are
said to be in the same control region if they have the
same set of control dependences [FOW87]. Previous al-
gorithms for this problem are either restricted to reducibl e
flow graphs [Bal92] or have O( £ N') complexity [CFSO0].
Control regioninformationisuseful for problemssuch asin-
struction scheduling for pipelined machines [GS87]; there-
fore, our linear-time agorithm for region determination is
of wide interest.

The PST is a tool which can enhance the performance
of many program anaysis algorithms. Each SESE region
is a control flow graph in its own right, so any program
analysis algorithm can be applied directly to it. The partial
results from each SESE region can be combined using the
PST to give the result for the entire procedure. Provided
that the combining is not overly expensive, this ‘divide-
and-conquer’ style of applying analysis agorithms can be
advantageous since the PST is a natural data structure for
exploiting global structure (nesting), local structure (of each
SESE region), and sparsity. We make these pointsin Sec-
tion 6 by showing how the PST can be used in three prob-
lems: conversion to SSA form, data flow analysisand dom-
inator computation. We also discuss possible applications
of the PST to parallel and incremental program analysis.
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2 Single entry single exit regions and
the program structuretree

In the literature, the term ‘single entry single exit region’
is not used consistently — there appear to be several re-
lated constructs‘aliased’ to thisterm [Kas75, Val 78, TV 80,
GPS90]. Therefore, we begin this section with a forma
definition of single entry single exit regions as used in this
paper . Thisdefinitionismotivatedin part by considerations
of control dependence, as will be made precise in Section 5.
We then show that single entry single exit regions can be
organizedintoatreecalled the programstructuretree (PST).

Figure1(a) showsacontrol flow graphwithitssingleentry
single exit regions marked. Note that each SESE region is
enclosed by a pair of control flow graph edges caled the
entry and exit edges respectively. SESE regions are either
nested, sequentially composed, or digoint. When regions
aresequentially composed, theexit edge of oneregionisaso
the entry edge of the following region. Figure 1(b) shows
the PST of the control flow graph of Figure 1(a). The PST
captures the nesting rel ationship of SESE regions; chains of
sequentially composed SESE regions, such as regions ¢, d
and e, are grouped in the PST.

2.1 Definingsingle entry single exit regions
First, we recall afew standard definitions.

Definition 1 A control flow graph & isa graph with dis-
tinguished nodes st art and end such that every node
occurs on some path from st art toend. start hasno
predecessors and end has no successors.

Definition 2 A node z is said to dominate node y in a
directed graph if every path fromst art toy includesz. A
node x issaid to postdominate a node y if every path from
y toend includes x.

By convention, a node dominates and postdominates it-
self. The notions of dominance and postdominance can be
extended to edges in the obviousway. Single entry single
exit regions can now be defined as follows.

Definition 3 A SESE region in a graph & is an ordered
edge pair (a,b) of distinct control flow edges a and b where

1. a dominatesb,
2. b postdominatesa, and
3. every cyclecontaininga also contains and vice versa.

We refer to a as the entry edge and b as the exit edge
of the SESE region. The first condition ensures that every
pathfromst ar t intotheregion passesthroughtheregion’'s
entry edge, a. The second condition ensures that every path
from inside the region to end passes through the region’s
exit edge, b. The first two conditions are necessary but not
sufficient to characterize SESE regions:, since backedges

do not ater the dominance or postdominance rel ationships,
the first two conditions alone do not prohibit backedges
entering or exiting the region. The third condition encodes
two constraints: every path frominsidethe regionto a point
‘above’ a passes through b, and every path from a point
‘below’ b to a point inside the region passes through a.

For future reference, we define the notion of cycle equiv-
alence.

Definition 4 Edgesa andb are said to beedge cycleequiv-
alent iff every cycle containing a containsa, and vice versa.
Smilarly, two nodes are said to be node cycle equivalent
iff every cycle containing one of the nodes al so containsthe
other.

If (a,b) isaSESE regionand (b, ¢) isaSESE region, then
(a,c) isa SESE region as well. Therefore, a graph with
edges can have O( £2) SESE regions— for example, every
edge pair in a linear sequence of nodes encloses a SESE
region. However, we have never found any usefor complete
enumeration of all SESE regions of a graph. Instead, for
each edge e in the graph, wewant to find the smallest SESE
regions, if they exist, for which e is an entry edge or an
exit edge. We will cal these the canonical SESE regions
associated withe. We expressthismoreformally asfollows.

Definition 5 A SESE region (a, b) iscanonical provided

e b dominatesd’ for any SESE region (a, b'), and
e ¢ postdominatesa’ for any SESE region (a’, b).

In straightlinecode, the region between any two pointsis
single entry single exit; we will ignore these trivial regions
and focus on SESE regionsinthe block-level CFG, in which
straightline code sequences have been coalesced into basic
blocks. Every edgeintheblock level CFG iseither between
a control operator (switch or merge) and a basic block, or
between two control operators.

2.2 Theprogram structuretree

We now consider the nesting structure of canonica SESE
regions and their organization into the program structure
tree.

Definition 6 Anoden inagraph G iscontained withinthe
SESE region (a, b) if a dominatesn and b postdominates.

Intuitively, noden is‘between’ a and b inthe graph. This
definition can beextended in theobviousway to containment
of SESE regions. Theorem 1 describes how canonical SESE
regionsin agraph are related.

Theorem 1 If Ry and R, are two canonical SESE regions
of a graph, one of the following statements applies.

1. Ry and R, arenodedigoint.
2. Rq iscontained within R, or vice versa.
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(a) control flow graph with SESE regions

(b) program structuretree

Figure 1: A control flow graph and its program structure tree

In other words, canonical SESE regions cannot have any
partia overlap — if two regionshave any nodesin common,
they are either nested or in tandem.? This is obvious in
the case of structured programs. For genera control flow
graphs, the required result may be proved as follows.

Proof: Suppose distinct canonical SESE regions («,b) and
(s,t) both contain a node n. Since « and s both dominate
n, they are ordered by dominance. Without loss of generality,
assume « dominates s. Similarly, b and ¢ both postdominate
n, SO they are ordered by postdominance. If b postdominates ¢,
then (s, t) is contained within (a, b).

Otherwise, ¢ postdominatesb. There are now three cases to
consider; in each case we derive a contradiction.

1. b and s are the same edge. Note that an edge cannot both
dominate and postdominate a node. Since b postdomi-
nates » and s dominates », this case cannot happen.

2. band s aredistinct and s dominates b. Since « dominates
s and s dominatesb, there isa b-free pathfrom st art to
a to s. Therefore, every path from s to end must contain
b since otherwise we would have a b-free path from « to s
toend which contradictsthe fact that b postdominatesa.
Therefore, b postdominates s. Similarly, s postdominates
a; otherwise there is a s-free path from st art toa to b
to end, which contradicts the fact that s dominates .

Every cycle through b passes through « and therefore
containsa path from « to b; this path must contain s since
a dominates s which dominatesb. Therefore, every cycle
through & passes through s. A similar argument shows
that every cyclethrough s must contain ¢ and therefore .
Therefore, (s, b) isaSESE region; since s postdominates
a, it followsthat (a, b) isnot canonical which is acontra-
diction.

2Notice that this property may not be true for SESE regionsthat are not
canonical.

3. bands aredistinct and s does not dominateb. Then there
isas-free path from st art to b. This meansthat s must
postdominate b; otherwise, we have a path from st art
to b to end which passesthrough ¢ (since ¢ postdominates
b) but not s, violating the assumption that s dominates ¢.
Since b postdominates n, s also postdominatesn. But s
dominates ». Since an edge cannot both dominate and
postdominate a node, this is a contradiction.

[}

In Figure 1, regions b and ¢ are digoint, regions a« and b
are nested, and regions f and ¢ are sequentially composed.

It follows from Theorem 1 that SESE regions can be or-
ganized as atree. Each nodein thistree represents a SESE
region. The parent of a region is the closest containing re-
gion, and children of aregionareall theregionsimmediatel y
contained withinit. We call thisthe program structure tree
(PST). We now show how the PST can be determined in
O(E) time.

3 Building the PST in linear time

The algorithm has two steps — first, find SESE regionsand
second, organize canonical SESE regionsinto the PST.

3.1 Cycleequivalenceisadequate

To find SESE regions, it is convenient to reduce the three
conditionsfor SESE regions to the single property of cycle
equivalencein arelated graph.

Theorem 2 Inacontrol flow graph &, edgesa and 4 enclose
a single entry single exit region if and only if « and b are
cycle equivalent in the graph formed from G by adding an
edgefromendtostart.
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Proof: [ = ] Suppose« and b enclose a SESE region in control
flow graph GG. By definition, ¢ and b are cycle equivalent in
G; we must show they are cycle equivalent in S, the strongly
connected graph formed by adding edgeend — start to G.
Consider any cyclein S notin G. Such acycleisformed by a
path from st art to end together with the backedge end —
start . If thiscycle contains a, then it also contains b since b
postdominatesa. Similarly, if this cycle contains b, then it also
contains ¢ since ¢« dominates b. Therefore, « and b are cycle
equivalentin .S.

[ <] Supposea and b are cycleequivalentin S. Thena and b
are cycleequivalent in G since every cyclein G isalso acycle
in S. Now consider any path P from st art to end containing
both « and b; such a path exists since every edge occurs on
some path from st art to end, and since « and b are cycle
equivalent in .S. Without loss of generality, assume « occurs
first on this path. There can be no b-free path from « to end,
sincethiswould yield acyclein S containing « but not b (using
the portion of P from st art to «, the b-free path to end, and
the backedgefrom end to st ar t ). Therefore, b postdominates
a, and the portion of P from the last occurrence of b to end is
a-free. Therecan beno a-free pathfrom st art tob, sincethis
would yield a cyclein S containing b but not «. Therefore «
dominatesb. m|

3.2 From directed to undirected graphs

Further smplification is possible because of the rather sur-
prising result that cycle equivalencein astrongly connected
graph remains the same when edge directions are removed.
This result alows us to find cycle equivalence classes in
the undirected multigraph corresponding to a strongly con-
nected graph. The advantage of working with undirected
graphsisthat algorithmsbased on depth-first search are sim-
plified in undirected graphs since cross edges and forward
edges are diminated.

Theorem 3 Let S be a strongly connected component, and
let U betheundirected multigraphformed from .S by remov-
ing edge directions. Edges a« and b are cycle equivalent in
S if and only if the corresponding undirected edges «’ and
b arecycle equivalentin U.

Proof: [ = ] We show that if edges a’ and b’ are not cycle
equivalentin U/, then corresponding edges « and b are not cycle
equivalentin S. Without loss of generality, assume there is at
least one cycle in U containing «’ but not 4’. Each edge on
suchacyclehasan associated directionin S. Adjacent edgesin
the cycle either have the same direction or opposing directions;
if adjacent edges have opposing directions, we say there is a
direction change at the node between these edges.

Choose C’ to beacyclein U containing «’ but not ' such
that this cycle has a minimum number of direction changes. If
¢’ hasno direction changes, then the corresponding edgesin S
form adirected cycle containing a but not 4. Otherwise, C' has
some minimum, non-zero number of direction changes.

Traversing C’ from «’ along the direction of «, let + and
y be the nodes on C’ where edge direction first changes and
then changes back. Since S is strongly connected, there exists
a directed pathiin S from z to y; let £’ be the corresponding

(63 b’ -free

Yy e

E

Figure 2: Undirected cycle C’ and path E’, with edge di-
rections shown

undirected path in U (Figure 2). Suppose neither a’ nor b’
occur on £’, and consider the cycle obtained by replacing the
portion of C”’ between  andy with path . Theresulting cycle
containsa’ but not ' and has fewer direction changesthan C’,
contradicting the assumption that €’ has a minimum number of
direction changes.

Otherwise, o’ and b’ may occur (perhaps several times) on
E'. If thefirst occurrenceon £’ is a’, then the path from o’ to
z aong C' together with the path along £’ from = to the first
occurrenceof ¢’ correspondsto adirected b-free cycle through
a. Similarly, if the last occurrence of either a’ or b’ on £’ isa’,
the path along £’ from the last occurrence of «’ to y, together
withthepathfromy toa’ along C’, formsasb’-free cyclethrough
a’ having fewer direction changesthan C”.

Otherwise, the first and the last occurrence of either o’ or &’
on £’ areboth b’. The path from 4’ to y along £’, y to = along
C’, and then z to b" along £’ correspondsto a directed a-free
cyclethrough b.

[ <] Suppose« and b are not cycle equivalent in .S. Without
loss of generality, thereis adirected cyclein S containing a but
not 4. The corresponding undirected cyclein U containsa’ but
not b’, so @’ and " are not cycle equivalentin U. O

3.3 A dow algorithm for cycle equivalence

Given astrongly connected graph .S, let U be the undirected
multigraph formed by removing edge directions. Since U/
is connected, a depth-first traversa will yield a depth-first
spanning tree, and the edges of U are divided into a set of
tree edgesand aset of backedges. Noticethat any cyclein U/
must contain at least one backedge. We use thisobservation
to recast the problem of cycle equivalence in terms of sets
of backedges rather than sets of cycles.

Definition 7 In any depth-first traversal of U/, a bracket of
atree edget isa backedge connecting a descendant of ¢ to
an ancestor of ¢.

Now consider whether two edgesin U are cycle equiva-
lent. Two backedges cannot be cycle equivaent since the
cycle formed from a backedge together with the tree path
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connecting its endpoints contains no other backedges. On
the other hand, atree edge and a backedge or two tree edges
may be cycle equivalent. The following theorems establish
conditionsfor detecting these equival ences.

Theorem 4 Abackedge b and atree edget are cycle equiv-
alent if and only if b isthe only bracket of ¢.

Proof: [ = ] Suppose b and ¢ are cycle equivalentin U. Since
b together with the tree path connecting its endpoints forms a
cycle, b must be a bracket of ¢. No other backedge can be a
bracket of ¢, since such a backedge together with the tree path
connecting its endpoints would form a cycle containing ¢ but
not &.

[ < ] Supposed isthe only bracket of ¢. Then b is the only
backedge connecting a descendant of ¢ to an ancestor of ¢, and
since every cycle must contain a backedge, any cycle through ¢
must contain b. Any cyclethrough b is comprised of b together
with ab-free path connecting 4’s endpoints. Any such path must
contain ¢, since every b-free path to a descendant of ¢ must pass
through ¢. a

The following lemma is needed to prove when two tree
edges are cycle equivalent; the condition for equivaence
and proof follow.

Lemmal In adepth-first spanning tree of U, if tree edges
s and ¢ have any bracket in common then they are ordered
by the ancestor relation in the tree.

Proof: (by contradiction) Suppose s and ¢ are not ordered by
the ancestor relation. Then no descendant of s is a descendant
of ¢ and vice versa. Any bracket of s connects a descendant of
s (say node z) to an ancestor of s; since z is not a descendant
of ¢, this cannot be a bracket of ¢. O

Theorem 5 Tree edges s and ¢ are cycle equivalent in I/
if and only if they have the same set of brackets in any
depth-first spanning tree of U.

Proof: [ = ] We show that if two tree edges do not have the
same set of bracketsin adepth-first spanning tree of U, they are
not cycleequivalent. Supposeedgeb is abracket of s but isnot
abracket of ¢. By the definition of brackets, s must occur onthe
tree path connecting the endpoints of b, but ¢ does not; thistree
path together with b forms a cycle containing s but not ¢.

[ < 11f s and ¢ havethe same set of brackets, Lemma 1 asserts
that they are ordered by the ancestor relation in the depth-first
spanning tree. Without loss of generality, assume s isan ancestor
of ¢. Any cycle through s must contain at least one backedge
connecting a descendant of s to an ancestor of s. Let b be the
first such backedgeafter s onthecycle; notethat all nodesin the
cyclebetween s and b are descendantsof s. Sinceb is abracket
of s itisalso abracket of ¢, and so ¢ is on the tree path between
s and the lower® endpoint of . If the cycle path from s to b
does not contain ¢, there must be some edge (p, ¢) on the path
which bypassest, i.e. p isanancestor of ¢ and ¢ is adescendant

3Throughout this section, we use variations of high and low to refer to
relative positionsin the depth-first search tree. Higher locations are closer
to root and have smaller DFS numbers.

of t. However, both p and ¢ are descendants of s. So (p, ¢)
is a bracket of ¢ but is not a bracket of s, acontradiction. The
proof that every cycle containing ¢ contains s is similar and is
omitted. a

During an undirected depth-first traversal, we can com-
pute the set of brackets for each tree edge. When retreating
out of a node, we form the union of bracket sets from the
node's children, together with the set of backedges from the
node to an ancestor, minus the set of backedges from a de-
scendant to the node; the result isthe bracket set for the tree
edgeintothe current node. Intuitively, the set of brackets of
atree edge isaname for the edge' s cycle equival ence class;
by comparing these sets, we find cycle equivalent edges.
However, building and comparing sets is expensive, so the
algorithm is inefficient. In the next section, we describe a
compact naming scheme for bracket sets that allows us to
avoid building and comparing entire sets.

3.4 Compact namesfor setsof brackets

Consider the graph shown in Figure 3(a) in which the depth-
first spanning tree is a simple chain and backedges corre-
spond to ‘structured’ loops that are are either digoint or
nested within each other. For such graphs, it is easy to see
that the set of brackets of an edge is uniquely named by the
innermost bracket of that edge, so the entire bracket set at
each tree edge is not needed. Instead, we can simply visit
nodes in reverse depth-first order and maintain a stack of
brackets. At each node, we delete brackets that connect a
descendant to the current node, and we add any brackets
connecting the node to an ancestor. Since the backedges are
digoint or properly nested, the deletions and insertions all
occur at the top of the bracket stack. When retreating out
of a node, the tree edge from its parent is labeled with the
name of the topmost bracket in the bracket stack; after this
traversal, tree edges with the same bracket 1abel belong to
the same equivalence class. InFigure3(a), each treeedgeis
labeled with the topmost element of the bracket stack, and
cycle equivaent edges have the same label.

Now consider the dightly more general case of linear
spanning trees in which the backedges are not properly
nested; an example is shown in Figure 3(b). The diffi-
culty hereisthat inthereverse depth-first traversal, brackets
are not deleted in stack order. Moreover, note that edges
a and b do not have the same set of brackets even though
the topmost element of the bracket stack of both edges is
z. To dlow arbitrary deletion, we implement the bracket
stack with a doubly-linked list. Brackets are aways added
tothetop of the stack, but they may be deleted from any po-
sitionwithin the stack. In thisway, the most recently added
bracket (the bracket whose lower endpoint is highest in the
tree) will be at thetop of the stack. In addition, wewill keep
track of the size of the bracket stack. It iseasy to seethat the
pair < topmost bracket, set size > uniquely labels each
equivalence class — for example, in Figure 3(b), edges «
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Figure 3: Compact names for bracket sets

and b will be placed in different equivalence classes, while
edges a and ¢ are placed in the same equivalence class.

Finally, wemust handlegeneral depth-first spanningtrees;
an example is shown in Figure 3(c). When we encounter
a node that has more than one child, the bracket sets of
the children must be merged. Unfortunately, the notion of
‘innermost bracket’ isno longer well-defined. For example,
at node e in Figure 3(c), it is not clear whether the most-
recently added backedgeshouldbeedge( f, d) oredge (4, c).
The resolution of thisdifficulty rests on the observation that
only one of the subtrees bel ow node e can contain any edges
cycle equivaent to an ancestor of e. Thisisbecause an edge
in a subtree of ¢ can only have brackets originating in the
same subtree; therefore, any ancestor of e having brackets
from multiple subtrees of e cannot be cycle equivalent with
any descendant of e. For example, edges between e and b
cannot be cycle equivaent to any edge below e. However,
edges between b and a can be cycle eguivaent to edges
between £ and <.

The solution therefore is to add an additiona “capping”
backedge whenever we need to merge two or more bracket
sets. This backedge becomes the topmost bracket in the
set, and the children’s bracket sets are then concatenated in
arbitrary order. The new bracket originates from the node
whose children are being merged, and extends up to the
highest node whose brackets come from more than one of
the branches. To add this new backedge requires keeping
track (at each nodein the tree) of the highest node reached
by any backedge below this point. The destination of the
new backedge from a node is the second-highest of the
node’s children’s highest backedges. This could be found
by examination of the bracket sets, but the highest-ending
backedgeisnot necessarily related tothefirst bracket in each
set (the highest-originating), so a full search of the bracket
set would be necessary. Fortunately, we can simply compute
this information independently in constant time for each
node. InFigure3(c), wewould add anew backedgefrome to
byasshownby thedotted:edgesWemust:show that oncethis

backedgeisadded, thepair < topmost bracket, set size >
identifies the equivalence class as before.

Lemma 2 The capping backedges added by the algorithm
do not alter the cycle equivalence relation for tree edges.

Proof: By Theorem 5, two tree edgesare cycleequivalentif and
only if they havethe same set of brackets. Consider tree edges s
andt¢. If they have the same set of bracketsafter adding capping
backedges, then they have the same set of brackets without
adding capping backedges. We must show that they will share
thesameset of new bracketswhen capping backedgesareadded.

We will use the examplein Figure 3(c) for illustration. Sup-
pose edge s is bracketed by a capping backedge (e, b). The
origin of that backedge, ¢, is a node with at least two children:
the highest-reaching branch has a backedgeto a point at least
ashighin the tree as b, and the second-highest-reaching branch
has abackedgeto 5. Now consider where edge ¢ (which hasthe
same original set of brackets as s) can occur. Edge ¢ must be
within the bracket (g, b) from the second-highest-reaching sub-
tree of e, S0 ¢t must be somewhere on the tree path from ¢ to b; ¢
must also be within the bracket (z, «) from the highest-reaching
subtree of e, so ¢ must occur on the tree path from ¢ to a. The
intersection of thesetwo pathsisthe tree path from e to 4. Thus,
the new bracket (e, b) is abracket of ¢. 0

Theorem 6 The compact bracket set names uniquely iden-
tify bracket sets.

Proof: We need to prove that two edges will have the same
compact name if and only if they are cycle equivalent. One
direction is reasonably easy: if two edges are cycle equivalent,
they will receive the same compact name. By Theorem 5 two
cycle equivalent edges will have the same bracket sets. By
Lemma 2 the backedges added during the depth-first traversal
will not affect the cycle equivalence relation. Therefore the
bracket sets, as computed by the algorithm, will have the same
size and the same top bracket. The cycle equivalent edges will
therefore receive the same compact name.

To completethe proof, we need to establish that if two edges
are not cycle equivalent, then they will not receive the same
compact name. Let « and b be two edges that are not cycle
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equivalent. By Theorem 5 they must have different bracket
sets, including (by Lemma 2) the new backedges added by
the algorithm. If these sets are different size, the algorithm
clearly gives them different compact names, so let us suppose
the bracket sets are the same size. By Lemma 1, if « and
b are not ordered by the ancestor relation, then they have no
brackets in common and therefore receive different compact
names. Otherwise, assume without loss of generality that «
is an ancestor of 5. Since the sets are the same size, but not
identical, « must have a bracket (p, ¢) not shared by b, and b
must have a bracket (r, s) not shared by «. The node p is a
descendant of « — if it is also an ancestor of b then the edge
(p, ¢) must belinked on the bracket list ahead of &’s top bracket.
Either (p, ¢) will bethetop bracket, or therewill be another still
higher. This bracket cannotinclude b, so b will have a different
top bracket and will receive a different compact name than «.
Now assume that p is not an ancestor of 4. In that casethe
paths from « to p and from « to b diverge at some point. Call
this node d. Since d has multiple children, a backedge was
added from d to a point at which backedges from only one of
the branches were still present. If that point is above «, then
the added backedge will bracket «, and either it or a higher
backedgewill be the top bracket for «, whileit could not be the
top bracket for 4. If the point is below «, then all backedges
from the branch & is on must have ended below «, so the top
bracket for b, whatever it is, must have ended also and so cannot
be a bracket of «. In either case, « and b will have different top
brackets, and so they will have different compact names. O

3.5 A fast algorithm for cycle equivalence

We can put these observationstogether into afast algorithm
which makes use of an abstract datatype called BracketL ist
to maintain lists of brackets. The following operations are
defined on this datatype.

create () : BracketList — make an empty BracketList
structure.

size (bl : BracketList) : integer — number of elements
in BracketList structure.

push (bl : BracketList, e : bracket) : BracketList —
push e on top of bl.

top (bl : BracketList) : bracket — topmost bracket in
bl.

delete (bl : BracketList, e : bracket) : BracketList —
delete e from bl.

concat (bl1, bl : BracketList) : BracketList —
concatenate b{, and bl5.

This abstract data type can be implemented as a record
consisting of a doubly-linked list of brackets, a pointer to
thelast cell of thelist, and an integer representing the size of
thelist. The doubly-linked list permits deletions anywhere
in the list. The pointer to the last cell of the list permits
fast concatenation of lists by in-place updateto the cell. We
leave it to the reader to verify that each of the operations of
the abstract data type can be implemented in constant time

using this concrete representation. The only subtlety isin
delete. When an edgeis pushed onto abracket list, the edge
data structureisupdated so it has a pointer to the bracket list
cell containing that edge; this permitsconstant time deletion
of an edge from a bracket list.

We use integers to identify cycle equivalence classes.
Procedure new-class () returns a new integer each time it
iscaled. This can be implemented using a static variable
initialized to zero that isincremented and returned each time
the procedureis called.

We assume each node structure has the following fields:

¢ n.dfsnum— depth-first search number of node.

¢ n.blist — pointer to node’s bracketlist.

e n.hi — dfsnum of destination node closest to root of
any edge originating from a descendant of node n.

The edge data structure saves the equival ence class num-
ber and the size of the bracket list when the edge was most
recently the topmost bracket of a bracket list. For example,
in Figure 3(b), edge z is the topmost bracket for edges ¢, a
and finally 4. a is given the same equival ence class number
as ¢ because the size of the bracket list a « isthe same as
it was when » was previously the topmost bracket (at edge
¢). Incontrast, « and b are given different equiva ence class
numbers. To access the val ues saved on brackets, each edge
structure has the following fiel ds:

¢ eclass— index of edge's cycle equivalence class.

o erecentSze — size of bracket set when e was most
recently the topmost edge in a bracket set.

o erecentClass— equivalence class number of tree edge
for which e was most recently the topmost bracket.

The edge and node data types can be implemented using
records in the obvious way.

Figure 4 gives the pseudocode for computing edge cycle
equivalence classes efficiently. It is easy to see that during
the depth-first traversa of the undirected graph, the amount
of work performed at each node is some constant amount
together with work proportiona to the number of edges
incident at the node. Thus, the algorithm requires O(E)
time, where £’ is the number of edges in the control flow

graph.

3.6 Buildingtheprogram structuretree

Since cycle equivalent edges are totally ordered in the con-
trol flow graph by dominance and postdominance, each ad-
jacent pair of edgesin thisorder encloses a canonical SESE
region. To find canonical regions, we first compute cycle
equivalence classes for edgesin O( ) time using the algo-
rithmin Figure 4. Any depth-first traversal of the original
control flow graph will visit edges in a given cycle equiv-
alence class in order; during this traversal, entry and exit
edges of canonica SESE regionsare identified.

Canonical regionscan be organized into a program struc-
ture tree such that aregion’sparent isthe closest containing
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Procedure CycleEquiv (G)

{

1:  performan undirected depth-first search

2:  for each node . in reverse depth-first order do

3 /* computen.hi */;

4: hio := min {t.dfsnum| (=, t) is abackedge} ;*
5: hii :=min {c.hi|cisachildof n } ;

6: n.hi := min {hio, hi1} ;

7: hichild := any child ¢ of n having c.hi = hiy ;
8: hiz := min {c.hi| cisachild of n otherthan hichild } ;
o:

10: /* compute bracketlist */

11: n.blist == create() ;

12: for each child ¢ of » do

13: n.blist := concat (c.blist, n.blist) ;

14: endfor

15: for each capping backedge d
from adescendant of » ton do

16: delete (n.blist, d) ;

17 endfor

18: for each backedgeb from a descendant of » to » do
19: delete (n.blist, b) ;

20: if b.class undefined then

21 b.class := new-class() ;

22: endif

23: endfor

24: for each backedgee from r to an ancestor of » do
25: push (n.blist,e) ;

26: endfor

27: if hiz < hio then

28: /* create capping backedge*/

29: d = (n,node[hiz]) ;

30: push (n.blist, d) ;

31: endif

32:

33 * determine classfor edge from parent(n) ton */
34: if n isnot theroot of dfstree then

35: let e be the tree edge from parent(n) ton ;
36: b :=top (n.blist) ;

37: if b.recentSize # size(n.blist) then

38: b.recentSize := size (n.blist) ;

39: b.recentClass := new-class() ;

40: endif

41: e.class ;= b.recentClass ;

42:

43: /* check for e, b equivalence*/

44: if b.recentSize = 1 then

45: b.class := e.class ;

46: endif

47: endif

48: endfor

}

Figure4: The cycle equivalence agorithm®

4min returnsinfinity (i.e. N 4 1) whenever set is empty.
5The codein C is roughly 200 lines long and may be obtained from
the authors.

region and its children are al the regionsimmediately con-
tained within the region. We discover the nesting rel ation-
ship during the same depth-first traversal that determines
canonical regions. The depth-first search keeps track of the
most recently entered region (i.e. the current region). When
aregion isfirst entered, we set its parent to the current re-
gion and then update the current region to be theregion just
entered. When aregionisexited, the current regionis set to
be the exited region’s parent. From Theorem 1, it follows
that the pushing and popping followsastack discipline. The
topmost SESE region on this stack when DFS reaches the
entry node of a SESE region R; isthe name of the smallest
SESE region containing R;. Once the depth-first traversa
is complete, the program structure tree has been built.

4 Empirical propertiesof the PST

We now present empirical evidence to characterize the
properties of the PST. We gathered data from 254 proce-
dures taken from the Perfect Club benchmark suite and the
SPECB89 benchmark suite, using Dennis Gannon’s Sigma
FORTRAN front-end (modified extensively by Mayan
Moudgill a Cornell), and a back-end of our own design.
The programs are listed bel ow.

suite program lines procedures
Perfect  APS 6105 97
LGS 2389 34
TFS 1986 27
TIS 485 7
SPEC89 dnasar 1105 17
doduc 5334 41
fpppp 2718 14
matrix300 439 5
tomcatv 195 1
linpack 793 11
total 21549 254

Figure 5(a) presents the distribution of region depth. In
the 254 PSTs there are 8609 regions. The maximum depth
is 13, and the average depth is 2.68. This agrees with
conventional wisdom that typical programs do not contain
deeply nested control structures. Figure 5(b) shows the
cumulative number of regions at or below each level; from
thisweseethat about 97 percent of al regionshave anesting
level of 6 or less.

In Figure 6, we show that as procedures grow larger, the
PST aso growsin size, but it becomes broader rather than
deeper.® Figure 6(a) plots each PST’s size in number of
regions versus procedure size, and we see that the number
of regions does grow with procedure size. This indicates
that larger procedures have larger opportunitiesfor exploit-
ing structure, as desired. Figure 6(b) shows that the nesting

6The 6 largest procedures are omitted from Figures 6 and 9 to avoid
compressing the horizontal axis. Their PSTs follow the general trend in
each figure.
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case 9.2%

loop 23.2%

block 60.2%
dag 5.4%

other 2.0%

Figure 7: Weighted proportion of regions by kind

depth of structures is independent of procedure size, as ex-
pected.

Once SESE regions have been detected, we can further
identify the kind of structure present in each region. Using
a simple pattern-matching pass, we identify each region as
being a basic block, a case construct, a loop, a dag, or a
cyclic unstructured region. Figure 7 shows the proportion
of each kind of region, where each region isweighted by the
number of nested maximal SESE regions. For example, an
if-then-else has aweight of two since it containstwo nested
maximal regions. Thisweighting gives a measure of region
size; blocks have unit weight. It isinteresting that even this
simple heuristic finds considerable structure. Infact, 182 of
the 254 procedures are completely structured, and we find
considerable structure for the remaining 72 procedures.

These empirica results from standard benchmarks show
that real programs contain an abundance of SESE structure
that can be exposed quickly by our algorithm. Typical PSTs
areflat and broad, not narrow and deep. We now show how
the algorithmsin this paper and the PST in particul ar can be
used to solve avariety of compilation problems.

5 Control regionsin linear time

The first application of our results is to the computation
of control regions. This application does not use the PST;
rather, it is areworking of the cycle equivalence agorithm
that also motivates the particular definition of single entry
single exit regions we have used.

The notion of control dependence playsan important role
in optimization and paralldization. Intuitively, a node n
is control dependent on a node ¢ if ¢ determines whether
n is executed. Control dependence is defined formally as
follows.

Definition 8 A node » is control dependent [FOW87] on
node ¢ with direction [ if there is a path P from ¢ to n
beginning with edge ! such that

1. n postdominatesall nodes other than ¢ on P, and
2rifandearedistinet; n doesnot postdominate c.

Control dependence for an edge can be defined analo-
gously. Nodes or edges having the same control depen-
dences are in the same control dependence equivaence
class, or control region. Ferrante, Ottenstein, and Warren
first posed the problem of partitioning control flow graph
nodes into control regions[FOW87]. Their agorithm used
hashing to compute control regionsin O(N ) expected time,
O(N?E) worst-casetime and O(N E) space. These results
were improved by Cytron, Ferrante, and Sarkar [CFS90]
who gave an O(EN) time, O(E + N) space algorithm
for finding control regions. Briefly, their agorithm works
by placing al nodes in a single equivaence class and then
repeatedly refining the equivalence relation by considering
the effect of each control dependence on the existing par-
tition. In the worst-case, the agorithm performs O(N)
work for each of O(E) control dependences. The prob-
lem with this approach is that control dependence equiva
lenceis defined in terms of the control dependence relation,
which has O(EN) size in the worst case. Ball [Bal92]
has recognized the need to characterize control dependence
equival ences without using control dependence and has de-
veloped a linear-time algorithm for computing control de-
pendence equiva ences. However, hisalgorithmworksonly
for reducible graphs and requires computation of both dom-
inators and postdominators. Podgurski has given alinear-
timea gorithmfor forward control dependence equivalence,
whichisaspecial case of general control dependence equiv-
alence [Pod93].

Using theresults of Section 3, we candesignan O(E) al-
gorithmto determine control regionsof arbitrary flow graphs
and which runs faster than just dominator computation, the
first step in al previous agorithms for this problem! The
key technical result inthissectionisthat control dependence
equivalence can be reduced to cycle equivalence.

Theorem 7 Let S be the strongly connected component
constructed by addingtheedgeend — st art to a control
flow graph G . Nodes « and 4 in G have the same set of
control dependencesiff « and b are cycle equivalent in S.

We leave it to the reader to verify this theorem for the
example shown in Figure 1(a). The proof of thistheoremis
straightforward, if tedious, and can befoundin[JPP93]. Un-
like the edge cycle equivalence relation, node cycle equiv-
alence is not preserved when edge directions are removed
from a graph. Fortunately, a smple construction lets us
reduce the problem of finding node cycle equivaencein di-
rected graphsto the problem of edge cycle equivalencein a
related directed graph.

Definition 9 Given a directed graph ¢, we define a node-
expanding transformation 7. For each node n in (&, there
isa pair of nodes n; and n, in 7 (), connected with the
edge n; — n,; we call this edge the representative edge
for n, denoted asn’. For eachedgen — m inG, thereisa
corresponding edge n, — m; in 7 (G).
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Figure 8 shows the node expansion step pictorialy. The
followingtheorem, together with Theorem 7, establishesthe
reduction of control dependence equivalence to edge cycle
equivalence. The proof isobviousand is omitted.

Theorem 8 Two nodes a and &b in a strongly connected
component .S are node cycle equivalent if and only if their
representative edges «’ and b’ are edge cycle equivalent in
the node-expanded graph, 7 (S).

Therefore, we can use our a gorithmfor edge cycle equiv-
aence to determine control regionsin O(E) time. Our a-
gorithmis asymptotically optimal; in addition, the constant
factor is small and the algorithm runs fast in practice. One
detail of our implementation is worth noting: we avoid ex-
plicitly expanding nodes and undirecting edges. Instead,
we use doubly-linked control flow edges (so that depth-
first search can traverse edges in either direction), and we
maintain a tuple of information at each control flow node,
correspondingto theinformationthat would be stored onthe
expanded nodes. The resulting code is dightly more com-
plex, but the savings in space and time over working with
the explicitly transformed graph are significant. Inarelated
technical report, we have shown that this agorithm runs
faster than dominator computation, which is just the first
step in all previousalgorithmsfor this problem [JPP93].

6 Applications of the PST

The Program Structure Tree is a tool for enhancing the
performance of program analysis agorithms by providing
a simple framework for exploiting global structure, local
structure, and sparsity. Theintuitiveideaisthe following.
Global structure: The PST is a tree of SESE regions
in which nesting structure is made explicit. Moreover,
each SESE region is a control flow graph in its own right.
Therefore, any global analysisagorithm can be applied un-
changed to each SESE region, and the partial results can be
combined using the PST to givethe global result. Thislets
us apply analysis algorithmsin a divide-and-conquer fash-
ion to the program, which can be awin if the combining of
partia resultsisnot overly expensive. For example, suppose
we have an O( N'2) algorithm and suppose there are k SESE
regions of roughly equal size in the PST of the control flow
graph..Provided.combining.can.be done guickly, the cost of

the divide-and-conquer approach is approximately (N/k)?
per region, or N2/k overall, and the algorithmis speeded up
by afactor of k. Asaconcrete example, the staticsingleas-
signment (SSA) formisusually computed using dominance
frontiers which can be O(N?2) in size [CFR*91]. We show
that using the PST, SSA computation can be performed sep-
arately ineach SESE region. Sincethesize of aSESE region
isroughly independent of program size (Figure 9) and there
isno combining of partial resultsto be donein thisproblem,
PST-based exploitation of nesting structureisawin.

Local structure: The PST lets us tailor analysis ago-
rithmsto the structure of each SESE region. Figure 7 shows
that in practice, most SESE regions are basic blocks, con-
ditionals, DAGs and loops; therefore, fast algorithms can
be used for these regions even if other regions in the PST
are unstructured or even irreducible. One way to view this
isthat the PST lets us ‘localize’ the effect of lack of struc-
tureinto SESE regionswhich do not affect analysis of other
regions.

Sparsity: In many analysis problems, the solution is
determined by asmall subset of the SESE regionsinthePST;
the other regions do not contribute to the solution and need
not be analyzed. For example, in converting a program to
SSA form, we show that ¢-function placement for avariable
x can be solved completely by analyzing only those regions
that contain an assignment to z. Thisletsusignorethe vast
majority of SESE regions, as we show experimentally.

We illustrate these points by discussing how the PST
can be used to speed up agorithms for two problems —
computing the static single assignment form and performing
data flow analysis. In particular, our experimental results
highlight the importance of exploiting sparsity.

6.1 UsingthePST in conversion to SSA form

Trandation into SSA form requires the introduction of ¢-
functions at some merge points in the control flow graph.
Cytron et al [CFRT91] showed that a ¢-function is needed
at amergeif itisthefirst pointin common ontwo pathsfrom
distinct definitions of avariable v to ause of v. They char-
acterized thisset of mergesin terms of a property caled the
dominancefrontier. Briefly, amerge m isin the dominance
frontier of a node n, DF(n), if n dominates a predeces-
sor of m but does not dominate m. Extending dominance
frontiersto sets, DF'(S) = Uses DF(s). For avarigble v
defined at nodesin the set 1/, Cytron et al showed that the
set of merges needing ¢-functionsfor v is exactly the iter-
ated dominancefrontier, DF'*(V'), whichisthelimit of the
sequence DF; 11 = DF(VUDF;),where DFy = DF(V).
The computation of DF* (V) is performed with a worklist
algorithm. The size of the dominance frontier of anode is
O(N?) intheworst case.

Our agorithm uses the nesting structure in the PST to
avoid computing the entire dominance frontier for each
node. The key theorem isthe following one.
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Theorem 9 If a merge node needs a ¢-function for vari-
able v, then it isin theiterated dominance frontier of some
assignment to v in the same SESE region as the merge node.

We omit the proof and describe only the intuition. First,
consider dominance frontiers. If the merge is the first node
in common on two paths from distinct definitionsof v, then
both definitions cannot be outside the region containing the
merge, since then the two paths must join prior to entering
the merge's region. Likewise, both definitions cannot be
in the same region nested within the merge’s region, since
the two pathswould join prior to exiting this nested region.
Therefore, amerge that is in the dominance frontier of two
gnmentsto v must bein the same SESE region as one of
them. By induction on the definition of iterated dominance
frontiers, theresultisproved for iterated dominancefrontiers
in general. Notethat thisimpliesthat any region containing
no definitions of v needs no ¢-functions.

We usethisresult to exploit both global structureand spar-
sity in the PST. Instead of computing dominance frontiers
for an entire procedure, we compute dominance frontiers
for each SESE region separately. This can be advanta-
geous — for example, the size of dominance frontiers for
nested repeat-until loops reaches the worst-case bound of
O(N?) [CFRt91]. When we exploit nesting structure us-
ing the PST, each loop is a SESE region whose dominance
frontiers are computed independently, thereby avoiding the
quadratic blowup. This is an example that illustrates the
exploitation of globa structure using the PST. To exploit
sparsity, we note that SESE regions that do not contain an
gnment to the variable can be omitted from the analysis.
Putting these observations together gives us the following
algorithmfor enhancing the performance of SSA a gorithms.

Algorithm for ¢-placement:
Build the program structure tree.
For each variable v, do the following.

1. Inthe PST, mark every region containing an assignmentto v.

2. For each region, collapse immediately nested regions into
single ‘statements’ as follows: if that region contains a def-
inition of the variable, treat the region as a definition of the
variable; otherwise, treat the region as a NO-OP. From
Theorem 9, it follows that collapsing nested regions as de-
scribed maintains the path properties that determine where
¢-functions are needed.

3. Apply any algorithm for finding the SSA form to each marked
region, treating the entry point of the region as a definition
and the exit asa use of the variable.

By maintaining alist of definitionsfor each variable, we
can perform the marking step in time proportiona to the
number of regions marked. Figure 10 shows the fraction
of SESE regions examined when placing ¢-functions for
5072 variables. We see that for most variables, only a small
fraction of SESE regions are examined. Seventy percent
of variables required examining less than one-fifth of the
regions. In Step 3, it is possible to exploit local structure
and use different SSA agorithms in each region if that is
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desired. For example, itistrivia to convert if-then-else and
loop structuresinto SSA form. Figure7 suggestsit might be
worth doing thistypeof al gorithm specialization. Moreover,
thePST can even be distributed across thelocal memories of
a parale machine, and computations in SESE regions can
be performed in paralel. Given the overheads of parallel
computation on current machines, this approach is unlikely
to yield much speed-up, but the principle is clear — the
PST can be used to exploit parallelism in compilation since
it tells us how to ‘divide’ the work and how to ‘combine
partia results.

The divide-and-conquer strategy works particularly well
in thisproblem because no ‘ combining’ of individual region
solutions is needed to generate the solution for the entire
procedure. Next, we discuss dataflow analysis, a problem
in which region solutions must be combined to yield the
solution for the entire procedure.
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6.2 UsingthePST in dataflow analysis

Solution techniques for monotone data flow analysis prob-
lems are classified into iterative methods and elimination
methods [Ken81, RP86]. We show discuss how the PST
can be used with either class of methods.

Exploiting global and local structure: Elimination
methods expl oit nested program structureto solve data flow
equations efficiently. Given some hierarchical decompo-
sition of program structure, analysis is performed in two
phases. Inthefirst phase, local information is computed for
increasingly larger regionsof the program; at each stageonly
theinformation from nested regionsistaken into considera-
tion. In the second phase, global information is propagated
to increasingly smaller regions. The classic approach to
elimination agorithms uses an interval decomposition of
the program [AC76].

The PST can be used as the hierarchical decomposition
for solving data flow systems via the elimination method:
in the first phase, local information is computed for each
SESE region in bottom-up order in the PST, and then global
information is propagated from larger to smaller SESE re-
gionsduring atop-downtraversal of the PST. In both phases,
we need some algorithmto collect or propagate information
within a SESE region. As discussed in Section 4, most re-
gions are simple constructs such as blocks, if-then or loop
congtructs; these regions may be processed quickly using
structure-based methods [Ken81]. What about the remain-
ing unstructured regions? An important aspect of the PST
isthat it is compatible with methods based on intervas. In
particular, we have the following theorem whose proof is
straightforward.

Theorem 10 If a control flow graph ' isreducible, then all
SESE regions of (¢ arereducible.

Therefore, if the origina graph is reducible, the (few,
small) unstructured SESE regions in the PST can be an-
alyzed using interval methods. Finally, for irreducible
regions, we can fall back on a general iterative method,
which is similar in spirit to so-caled ‘hybrid’ ago-
rithms [Zad84, HDT87, MR9(Q]. It is interesting to note
that Graham and Wegman exploited single-exit intervalsto
speed up elimination-based data flow analysis[GW76].

Exploiting sparsity: Recent work on speeding up data
flow analysis has focused on solving individual instances
of data flow problems, such as finding the availability of
x + y, as opposed to analyzing a property for all variables
or expressions simultaneously as is done in the traditional
bit-vector approach. In this case, much of the control flow
graph doesnot contribute(i.e. modify or use) tothesolution.
Foarse methods of dataflow analysis attempt to avoid prop-
agating information through regions of the program where
the data flow values are not modified.

Our approach to exploiting sparsity using the PST is to
bypass SESE regionshaving only identity transfer functions.
Itiseasy to show that bypassing such “transparent” regions

does not effect the global data flow solution. Given an data
flow problem instance, we build a quick propagation graph
(QPG), which is much smaller than the control flow graph,
and then solve the data flow system using this graph. The
solution in the QPG can then be projected back into the
control flow graph. The nodes in a QPG are a subset of
the control flow graph nodes, and each edge in a QPG is
denoted by a pair of control flow edges (e1, e2) such that
either e; and e, are the same edge, or (e1, e2) encloses a
SESE region. Therefore, the QPG edge connectsthe source
of e; to the destination of e,. QPGs are constructed so that
each edge bypasses a maxima SESE region having only
identity transfer functions. (Optimizationsto the QPG that
allow additional forms of bypassing and special treatment
of constant transfer functions are discussed in Johnson’'s
dissertation.)

Once the quick propagation graph is built, the data flow
systemissolved using thisgraph, thereby avoiding transpar-
ent regions altogether. Since bypassing is performed on the
basis of SESE regions, and since these regions are also the
basis for exploiting structure using an elimination method,
use of the PST allows structure and sparsity to be exploited
simultaneously. Of course, nothing precludes the use of an
iterative method for the entire QPG. Once the solution in
the QPG is obtained, it is a sSimple matter to transfer this
solution to the CFG as explained bel ow.

Algorithm for PST-based data flow analysis:

1. Mark SESE regions containing a non-identity transfer func-
tion. This is done by starting at the leaf nodes (i.e. basic
blocks) having statements with non-identity transfer func-
tions and then marking all ancestorsin the PST.

2. Construct the QPG by traversing the CFG, bypassing any
unmarked SESE regions as explained above.

3. In the QPG, solve the data flow system using any solution
method.

4. Transfer the solution from the QPG to the CFG as follows.
Every edge in the CFG is either present in the QPG or it
is part of a transparent SESE region (e1, e2) bypassed in
the construction of the QPG. In the first case, the data flow
solution on the corresponding QPG edge is transferred to the
CFG edge. In the second case, the data flow solution on edge
e1 (Or e2) inthe QPG is transferred to the CFG edge.

Note that the marking step can be done in time propor-
tional to the number of marked regions if we know the
location of the non-identity transfer functions. For com-
mon optimizations, the non-identity transfer functions can
be found by maintaining a list of definitions and uses for
each variable. Thetotal timerequired to buildaQPG ispro-
portional to the size of the QPG plusthe number of marked
PST regions. Intheworst case, al PST regions are marked,
no regionsare bypassed, and the QPG issimply theorigina
CFG.

As we have shown in Section 4, PSTs tend to be broad
and shallow. Therefore, if the number of |eaf nodes contain-
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ing non-identity transfer functions is small, then the total
number of regions which cannot be bypassed will be small.
Preliminary studiesshow that the QPG isusually quite small
compared to the original CFG, averaging less that 10% the
size of the (statement-level) CFG. Since QPGs are often so
small relativetothesizeof the CFG, itisasignificant savings
that our algorithm does not examine transparent regions. In
a previous paper, we discussed a representation of depen-
dences called the dependence flow graph(DFG) [JP93]. In-
tuitively, the DFG isa set of ‘basis’ graphs from which we
can construct the QPG for a given data flow problem. For
lack of space, we postpone discussion of this connection.

In principle, the PST (or QPG) can be used to perform
data flow analysis in paralldl — as is standard with divide
and conquer agorithms, wework on leaf regionsin parallel,
and work on an interior node of the PST (or QPG) when
all itschildren have been processed. We refer the interested
reader to related work by Gupta, Pollack and Soffa[ GPS90]
who use the SESE decomposition of programs in a struc-
tured programming language to perform data flow analysis
in paralel. Note that our definition of SESE regions is
stronger than theirs since we require unique entry and exit
edges, whereas they allow multiple edges to the entry node
from outside the region, as well as out of the exit node. As
in the case of SSA computation, parallel data flow analy-
sisislikely to be a whimsical idea unless communication
latencies on parallel machines are reduced significantly.

6.3 Discussion

The PST can be used to design divide-and-conquer style -
gorithmsfor asurprising variety of problems. For example,
it isnot difficult to design such an algorithm for computing
the dominator tree of a control flow graph — first, build the
dominator tree of each SESE region, and then piece together
the local trees using global structure (nesting) information
in the PST. Such an approach might lead to fast incremental
algorithmsfor analysis problems since the PST can be used
to isolate regions of the graph where information must be
recomputed. The PST isalso useful in generating code for
dataflow machines from programsin a language like FOR-
TRAN or C since it exposes SESE regions which dataflow
edges can potentially bypass [BJP91, BMO90].

There is an enormous body of work on elimination and
iteration algorithms, and we refer the reader to surveys by
Ryder and Paull [RP86], and by Kennedy [Ken81]. Tarjan
and Valdes useahierarchical representation of SESE regions
of adifferent kindto do elimination[Val 78, TV80]. Sparsity
was highlighted by Choi, Cytron, and Ferrante[ CCF91], and
by Dhamdhere, Rosen, and Zadeck [DRZ92]. Choi et al ex-
tend the SSA form to build sparse eval uation graphs (SEGS);
these graphs al so bypass uninteresting regionsof the control
flow graph and in general will be smaler than our quick
propagation graphs. However, they are more costly to build
anditisunclear how to expl oit both sparsity and structureus-
iNg:SEGs;since their.edges crossinterval (or SESE region)

boundariesin an ad hoc manner. Recently, Cytron and Fer-
rante[ CF93] haveimproved thetimefor placing ¢-functions
(needed to build SSA form and SEGs) to O(E«(E)) time;
Sreedhar and Gao [SG94] have a linear-time agorithm for
¢-function placement. It would be interesting to compare
the performance of these a gorithmsto the performance of a
PST based algorithm that used the dominance frontier algo-
rithm [CFR191] selectively in the few, small unstructured
SESE regionsin the PSTs of typical programs.

7 Conclusions

The program structure tree (PST) isa hierarchical represen-
tation of program structure in which nodes represent single
entry singleexit (SESE) regions and edges represent region
nesting. The PST is defined for arbitrary flow graphs, even
irreducible ones. We showed that finding SESE regionsis
equivalent to solving the naturally stated graph problem of
cycleequivaence: edges are equivaent iff each cycleinthe
graph contains al or none of the edges in an equivaence
class. In thispaper, we discussed an O( E') algorithmfor the
cycle equivalence problem and used it to compute the PST
of acontrol flow graph in O(E) time.

We presented experimental evidence that real programs
contain abundant SESE regions organized into broad, shal-
low PSTs; even the worst unstructured portions of proce-
dures contain nested structure and comprise only a small
fraction of the total procedure size. Intuitively, the PST en-
ables us to isolate the effect of lack of structure into small
SESE regions, thereby letting us exploit structure globally.

Our results have many applications. We showed that the
problem of determining control regions, which is needed in
global code scheduling for example, can be solved in O(E)
time using the cycle equivalence algorithm.” The recursive
structure of the PST makes it possible to design divide-
and-conquer style algorithmsfor control flow and data flow
problems, exploiting global structure, locd structure, and
sparsity.

We concludethat single entry singleexit regionsand their
nesting relationship provide a simple, intuitive, and inex-
pensive approach to representing and expl oiting hierarchi cal
program structure based on control dependence equival ence.
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“The PST can be used to give a linear time and space factorization of
control dependencesthat usually returns control dependence setsin time
proportional to their size. The problem of providing such a factorization
that always returns control dependence sets in proportional time remains
open.
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